Ask Microeconomics Expert

GROUP A
problem1)

An agent has a utility function over goods 1 and 2 of the form U= X1c X2d, where c is your individual number and d is your minimum number. The agent’s income is equal to your 2-digit number. The price of good 1 is your maximum number and the price of good 2 is your median number. Derive the agent’s demand functions for good 1 and good 2. find out the quantities of good 1 and good 2 in the agent’s optimum bundle.

problem2)

An agent has a utility function over goods 1 and 2 of the form U= X1c X2d, where c is your 1- digit number and d is your minimum number. The agent’s income is equal to your 2-digit number. Initially, the price of good 1 is your median number and the price of good 2 is your individual number.
Let the price of good 1 change to your maximum number. For good 1, determine for this price change the
a) total price effect
b) the substitution effect
c) the income effect

problem 3)

For the same problem you analysed in problem 2, find for that price change the
a) Laspeyres measure of the welfare change
b) Paasche measure of the welfare change
c) compensating variation
d) equivalent variation

GROUP B

problem 4)

a) Consider the problem you analysed in problem 2. Instead of the income value you used there, allow the agent to have an endowment of good 1 equal to the first digit of your 2- digit number, and an endowment of good 2 equal to the second digit of your 2-digit number. Derive expressions for the ordinary demands for both goods and find out the gross and net demands for each good.

b) An agent has a utility function over wealth given by U= W.5/c where c is your 1-digit number. Their wealth if not robbed is equal to your 2-digit number multiplied by 1000. Should they be robbed, their wealth will be your maximum number multiplied by 1000. They assess the probability of being robbed as 1/(median number x 10). How much would this agent be prepared to pay for full insurance? How much would they have to pay for full (actuarially) fair insurance?

problem 5)

Consider the two agents, A and B.

• Agent A has the utility function UA= X1c X2d where c is your minimum number and d is your median number. A’s endowment of good 1 is the first digit of your 2-digit number, and A’s endowment of good 2 is the second digit of your 2-digit number.
• Agent B has the utility function UA= X1c X2d where e is your maximum number and f is your 1-digit number. B’s endowment of good 1 is the second digit of your 2-digit number, and B’s endowment of good 2 is the first digit of your 2-digit number.
• The price of good 2 is your 1-digit number.

a) Find the equilibrium price for good 1 and the gross and net demands of both agents for goods 1 and 2.
b) Repeat the analysis for the cases where

i. the values of c and d are swapped for A, and e and f are swapped for B.
ii. the endowments of goods 1 and 2 are swapped for A, and the endowments of goods 1 and 2 are swapped for B [with c, d, e, f at their original – i.e part a) values].

problem6) Consider the two agents, A and B. Each can choose one of two strategies, 1 and 2. The payoffs for the various outcomes are illustrated below (A’s payoffs listed first in each cell):
                                                                   Player B
                                                    Strategy 1            Strategy 2

  Player A            Strategy 1            3.5, b                   c, 2.5

                           Strategy 2             e, f                      g, 1.5

where:        
• b is your individual number
• c is your 1-digit number
• e is your median number
• f is the first digit of your 2-digit number
• g is the second digit of your 2-digit number

a) Assume that A and B act simultaneously. Find all equilibrium strategy combinations of this game, including, where appropriate, mixed-strategy equilibria. Show A and B’s equilibrium payoffs.
b) Reprepare this game in extensive form. Determine the equilibria and payoffs for the case in which A moves first, and the case in which B moves first.

GROUP C

problem7)

Consider a market in which all output is produced by two firms, A and B. The market inverse demand curve is given by P= a-bQ where a is your two-digit number x 10 and b is your individual number. Both firms have a constant marginal cost equal to your median number.
a) Find the Cournot equilibrium outputs for firms A and B, the equilibrium market price and the equilibrium profit for each firm.
b) Repeat for
i. the case where the marginal cost of firm B is constant and equal to your maximum number.
ii. The case where there are n firms with marginal cost equal to your median number. Find the output of each firm, the market price and each firm’s profit, where n is the sum of your individual number and your median number. [Hint: with identical costs each firm’s output will be the same].
iii. The case where there are two firms A and B and the marginal cost for firm A is mAQA (where mA is your minimum number) and the marginal cost for firm B is mBQB (where mB is your 1-digit number).

problem8). Consider a market in which all output is produced by two firms, A and B. The market inverse demand curve is given by P= a-bQ where a is your two-digit number x 10 and b is your individual number. Both firms have a constant marginal cost equal to your median number.
a) Find the Stackelberg equilibrium outputs for firms A and B, the equilibrium market price and the equilibrium profit for each firm, on the assumption that firm A is the leader and firm B is the follower.
b) Repeat for
i. the case where the marginal cost of firm B is constant and equal to your maximum number.
ii. The case where there are two firms A and B and the marginal cost for firm A is mAQA (where mA is your minimum number) and the marginal cost for firm B is mBQB (where mB is your 1-digit number).
iii. The above two cases on the assumption that B is the leader and A the follower.
problem9)

Consider a market a market for used cars in which cars can be either high-quality or lowquality. The demand for both types of car is perfectly elastic. The price buyers are willing to pay for a car known to be of low quality is your individual number x $2000 and the price they are willing to pay for a car known to be of high quality is your maximum number x $4000. Sellers are willing to accept a price equal to your minimum number x $1000 for a car known to be of low quality, and to accept a price equal to your median number x $3750 for a car known to be of high quality. The number of cars available for potential sale is equal to your 2-digit number x 200. The number of high-quality cars in that group is equal to your maximum number x 100. The supply of both cars is perfectly elastic up to the quantity of cars available.

What will be the outcome in the market in terms of the prices and quantities of cars of each type sold, the welfare gains from trade, and how those gains are distributed, is each of the following cases:
a) Information on quality is complete and symmetric.
b) Information on quality is zero and symmetric, and both buyers and sellers have the utility function U=V, where V is wealth.
c) Information on quality is complete for sellers but zero for buyers, and buyers have the utility function U=V.
d) Information on quality is complete for sellers but zero for buyers, and buyers have the utility function U=c ln v, where c is your 1-digit number.
For cases c and d above, find the maximum value of the sellers’ valuation of good-quality cars (given your original value of θ) that would allow a market for good-quality cars to exist. For the original sellers’ valuation of good cars find the minimum value of θ that would allow a market for good-quality cars to exist.

If the sellers of good quality cars in cases c and d were able to spend $18000 on a certification process that buyers regarded as 100% credible, would they do so? If not, what would be the maximum amount they would be willing to pay?

problem10) Consider a good for which production generates external costs. Let the marginal external cost function be MEC=aE, where a is your 1-digit number, and E the quantity of emissions. The pollution can be abated at a cost. Let the marginal cost of abatement function be MCA=B-cE, where B is your 2-digit number and c is your median number.
a) Find the socially optimal level of emissions, and the optimal value of abatement costs and external cots.
b) If an emission fee were levied on producers, what would be the deadweight social loss associated with setting the fee at 90% of the correct value?
c) If an emission standard were enforced, what would be the deadweight social loss associated with setting the standard at 110% of the correct value?

Microeconomics, Economics

  • Category:- Microeconomics
  • Reference No.:- M9457

Have any Question?


Related Questions in Microeconomics

Question show the market for cigarettes in equilibrium

Question: Show the market for cigarettes in equilibrium, assuming that there are no laws banning smoking in public. Label the equilibrium private market price and quantity as Pm and Qm. Add whatever is needed to the mode ...

Question recycling is a relatively inexpensive solution to

Question: Recycling is a relatively inexpensive solution to much of the environmental contamination from plastics, glass, and other waste materials. Is it a sound policy to make it mandatory for everybody to recycle? The ...

Question consider two ways of protecting elephants from

Question: Consider two ways of protecting elephants from poachers in African countries. In one approach, the government sets up enormous national parks that have sufficient habitat for elephants to thrive and forbids all ...

Question suppose you want to put a dollar value on the

Question: Suppose you want to put a dollar value on the external costs of carbon emissions from a power plant. What information or data would you obtain to measure the external [not social] cost? The response must be typ ...

Question in the tradeoff between economic output and

Question: In the tradeoff between economic output and environmental protection, what do the combinations on the protection possibility curve represent? The response must be typed, single spaced, must be in times new roma ...

Question consider the case of global environmental problems

Question: Consider the case of global environmental problems that spill across international borders as a prisoner's dilemma of the sort studied in Monopolistic Competition and Oligopoly. Say that there are two countries ...

Question consider two approaches to reducing emissions of

Question: Consider two approaches to reducing emissions of CO2 into the environment from manufacturing industries in the United States. In the first approach, the U.S. government makes it a policy to use only predetermin ...

Question the state of colorado requires oil and gas

Question: The state of Colorado requires oil and gas companies who use fracking techniques to return the land to its original condition after the oil and gas extractions. Table 12.9 shows the total cost and total benefit ...

Question suppose a city releases 16 million gallons of raw

Question: Suppose a city releases 16 million gallons of raw sewage into a nearby lake. Table shows the total costs of cleaning up the sewage to different levels, together with the total benefits of doing so. (Benefits in ...

Question four firms called elm maple oak and cherry produce

Question: Four firms called Elm, Maple, Oak, and Cherry, produce wooden chairs. However, they also produce a great deal of garbage (a mixture of glue, varnish, sandpaper, and wood scraps). The first row of Table 12.6 sho ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As